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1. Introduction

Many years ago [1–4] we suggested a picture of the formation and composition of

the QCD string as a linear chain of gluons, which are the perturbative excitations

the theory. This picture is motivated by ’t Hooft’s large-Nc expansion. In partic-

ular, a time-slice of a high-order planar diagram for a Wilson loop (Fig. 1) reveals

a sequence of gluons, each of which interacts only with its nearest neighbors in the

diagram by mainly attractive forces. This immediately leads to the idea that the

QCD string is composed of a “chain” of constituent gluons, each held in place by its

attraction to its two nearest neighbors in the chain. The challenge in such a model

is to understand how the attractive force between gluons, which is essentially due

to one-gluon exchange, can manage to hold these massless constituent particles in

a bound state. In this article we address this problem, and in particular we show

how recent perturbative results for the static quark potential, and the related force

renormalization scheme [5], bear on this issue. We propose an appealing way to

interpret perturbative QCD that leads to a self-consistent extrapolation of the per-

turbative force of a quark on an anti-quark to a linear confining force. We do not
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Figure 1: The gluon chain as a time slice of a planar diagram (shown here in double-line

notation). A solid hemisphere indicates a quark color index, open hemisphere an antiquark

color index.

claim that this in any way proves confinement, but rather that it provides a model

framework for thinking about the physics of confinement which stays conceptually

close to perturbation theory. A computational scheme is presented, involving vari-

ational and perturbative elements, which we hope to eventually apply to calculate

the ground state (and the corresponding static quark potential) of the gluon chain.

Even without a full calculation of this ground state, we are able to use our variational

framework to demonstrate both the logarithmic broadening of the QCD flux tube,

and the existence of a Lüscher −c/R term at long distances.

Section 2, below, reviews the motivation of the gluon-chain model, with emphasis

on how this model accounts for features of the confining force which are problematic

for other theories of quark confinement. In section 3 we discuss in more detail the

physics of gluon chain formation, and the binding of gluons in the chain. The running

coupling is, of course, crucial to this dynamics, and at the coupling strengths relevant

to chain formation there are important issues of renormalization scheme dependence

that must be confronted. In section 4 we present a variational framework for semi-

perturbative calculation, and show how it applies to a string tension calculation. In

this section we demonstrate how the gluon-chain model accounts for roughening, and

the Lüscher −c/R term in the static quark potential. The last section contains some

concluding remarks.

2. The Gluon-Chain Model

Like any theory of quark confinement, the gluon-chain model aims at explaining the
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linearity of the static quark potential. However, it is now widely recognized that

in addition to the linearity feature, there are at least three other properties of the

confining potential which a satisfactory theory of confinement is obligated to explain:

• Casimir Scaling: Consider the potential between static quarks in a repre-

sentation r of the gauge group. From the onset of linearity in the potential, to

a finite (adjoint string-breaking) scale, the string tension σr is proportional to

the quadratic Casimir Cr of the representation, i.e.

σr =
Cr

CF
σF (2.1)

where the subscript F denotes the fundamental representation. For rectangular

L×T Wilson loops with L/T fixed, the range of L for which the Casimir scaling

law is valid increases logarithmically with Nc.

• Center Dependence: Asymptotically, the string tension can depend only on

the N-ality of the group representation r, i.e. on its transformation properties

under the center subgroup of the gauge group.

• String Behavior: The diameter of the color-electric flux tube between static

sources is believed to grow logarithmically with the separation L of the sources

(roughening), and there is a −c/L contribution to the asymptotic potential

(the Lüscher term) which is due to quantum fluctuations of the QCD string,

rather than Coulomb attraction of the quarks.

Taken together, this is a challenging set of conditions. The abelian monopole

theory [6], for example, has a very hard time accounting for Casimir scaling [7],

as well as for the center dependence of certain operators [8]. Instanton [9] and

meron [10] mechanisms are consistent with Casimir scaling, but have difficulties with

center dependence. The center vortex theory [11] is in perfect accord with center

dependence, and it is at least roughly compatible with Casimir scaling, as shown

in ref. [12]. On the other hand, the vortex theory does not really explain the high

degree of accuracy of the Casimir scaling rule, which has been revealed in numerical

simulations [13]. Finally, the string-like behavior of the QCD flux tube seems to pose

problems for any theory of confinement based essentially on one-gluon exchange (e.g.

the proposal of ref. [14]), as well as for the proposal of stochastic confinement [15].

The gluon-chain model of QCD string formation, on the other hand, meets the

conditions listed above in a rather simple and appealing way, as we will discuss below.

2.1 Linear Potential

As a heavy quark-antiquark pair move apart, and their color charge separation in-

creases, we expect that at some point the interaction energy increases rapidly due to
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Figure 2: As heavy quarks (large circles) separate, energy is minimized by keeping the

average color charge separation below a certain limit. This is achieved by pulling out

a sequence of gluons (small circles) between the heavy quarks. Again, solid and open

shadings denote quark and antiquark color indices, while dotted lines indicate contracted

color indices between a quark and a gluon or between neighboring gluons.

the running coupling (cf. section 3). Eventually it becomes energetically favorable

to reduce the effective charge separation by inserting a gluon between the quarks. In

the Nc → ∞ limit, the quark and antiquark can only interact with the intermediate

gluon, but not directly with each other. As the heavy quarks continue to move apart,

the process repeats, and we end up with a chain of gluons, as shown in Fig. 2, in

which the average distance between color charges remains fixed, irrespective of the

separation of the heavy sources. The energy of the system is approximately NEgluon,

where N is the number of gluons in the chain, and Egluon is the kinetic and nearest-

neighbor interaction energy per gluon. If the quarks are separated by a distance L,

and the number of gluons per unit quark separation (N/L = 1/R) is fixed, then

Echain ≈ NEgluon =
Egluon

R
L = σL (2.2)

where σ = Egluon/R is the string tension. The linear growth in the number of

constituent gluons is the origin of the linear potential in the gluon-chain model.

Alternatively, we may understand the linear potential in terms of a constant

force. The force between neighboring constituent gluons is dependent on the average

separation R = L/N of gluons along the quark-antiquark axis. If this separation

remains fixed as L increases, then the average intergluon force remains fixed. The

intergluon force, which is the same everywhere in the chain, can be interpreted as a

string tension, which is constant irrespective of the quark separation.

2.2 Casimir Scaling

To leading order in Nc, a group character in representation r is given by a product

– 4 –



�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
�� �

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
������

���
���
���

I.

II.

III.

Figure 3: Adjoint string-breaking in the gluon chain model. Two gluons in separate

chains (I) scatter by a contact interaction, resulting in the re-arrangement of color indices

indicated in II. This corresponds to chains starting and ending on the same heavy source.

The chains then contract down to smaller “gluelumps” (III).

of group characters in the fundamental representation

χr[g] ∝
(

χF [g]
)n(

χ∗
F [g]

)n

+ sub-leading terms. (2.3)

By factorization at large-Nc, a Wilson loop in representation r has a string tension

σr = MrσF (2.4)

at Nc → ∞, where Mr = n+n. In this limit, the quadratic Casimir is Cr = MrNc/2.

Exact Casimir scaling is therefore a property of the planar limit.

The gluon-chain model, which is motivated by large-Nc considerations, inherits

this property. A heavy source in representation r is the terminus ofMr separate gluon

chains, one for each of the n quark and n antiquark charges in the direct product

forming the representation r. Since the chains do not interact in the Nc = ∞ limit

(the interaction is a non-planar process, as can easily be verified by considering the

relevant Feynman diagrams), the total energy is simply the sum of the energies of

each of the chains. In this way, Casimir scaling is obtained, at least at large Nc.
1

2.3 Center Dependence

Asymptotically, the string tension of static sources in a higher color group repre-

sentation r depends only on the N-ality, rather than the quadratic Casimir, of the
1At small Nc, the Casimir is not simply proportional to Mr. On the other hand, at small Nc,

interactions between the chains cannot be neglected. We cannot say, at present, whether this model

predicts any substantial deviation from Casimir scaling at small Nc.
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group representation. Let us consider how this comes about in, e.g., the adjoint rep-

resentation (the analysis is easily generalized to other representations). Beginning

with heavy quark sources in the adjoint representation, there are two gluon chains,

as shown in Fig. 3. Nearby gluons in each chain can scatter, e.g. by a contact in-

teraction, and rearrange the sequence of colors as shown in the figure. The result

is that two gluon chains transform to two “gluelumps”; the adjoint string is bro-

ken (providing the sum of gluelump masses is less than that of the double chain),

and the resulting string tension is zero. This is the correct prediction, since the

N-ality of the adjoint representation is also zero. However, the scattering process

indicated is non-planar, and the transition rate from the two-chain structure to the

gluelump structure is 1/N2
c suppressed. In the large-Nc limit, we therefore recover

exact factorization and Casimir scaling.

2.4 String Behavior

It should be obvious, just from the figures, that a gluon-chain is a discretized string 2

of some kind, with the constituent gluons playing the role of “string-bits.” Therefore

it is reasonable to expect that, due to quantum fluctuations of the chain configura-

tion, we should find the logarithmic broadening of the color-electric flux tube with

quark separation (roughening), as well as the Lüscher −c/R term term in the static

quark potential. These effects are very non-trivial, however, and need to be demon-

strated in the context of the gluon-chain model. We will postpone the analysis to

section 4.

3. The Force Renormalization Scheme and Gluon Chain For-

mation

In the remarks above, we have passed lightly over a fundamental issue. Gluons are

massless particles. The question is how nearest neighbor forces between constituent

gluons actually manage to bind such particles together in a chain. Clearly it is

hopeless to find a binding mechanism at very weak coupling αs = g2/4π, since the

kinetic energy of a gluon confined to a region of size R is of order 1/R, whereas the

interaction energy (at tree level) is only of order −αs/R. The fact that the effective

αs is not really constant, but grows with distance scale R, is obviously of crucial

importance.

Superficially, a coupling which grows monotonically with distance seems exactly

what is needed for quark confinement. However, different choices for what the cou-

pling measures lead to drastically different estimates of the quark-antiquark static

potential. For example, if we say that αs(R) is a measure of the potential energy

2For a treatment of discretized bosonic strings in light-cone gauge, see ref. [16].
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between quark and anti-quark (the “V-scheme”), we would then write the familiar

expression for the potential energy of a static quark and antiquark separated by

distance R in an SU(Nc) gauge theory

Vqq̄(R) = −
(

1 − 1

N2
c

)

Ncα
V
s (R)

2R
. (3.1)

It should be understood that this formula is a definition of the running coupling, and

there is a complicated relation (beyond two loops) of αV
s (R) in the V-scheme to the

running coupling in, e.g., the MS scheme [5, 17].

If αV
s (R) grows monotonically with R, as suggested by the first few terms in the

renormalization group Gell-Mann-Low function, the potential in eq. (3.1) is actually

the opposite of what is required for confinement. Assuming that αV
s (R) grows with

R, perhaps even blowing up at some finite R∞ (the Landau singularity), the potential

in eq. (3.1) leads to a force which first weakens, then vanishes at some point, and

finally becomes ever more strongly repulsive. The problem is that a monotonically

increasing αV
s (R) tends to drive the potential away from the V = 0 axis in the

direction of negative V , whereas in fact the static potential crosses the axis at some

point and becomes positive. Therefore, as defined in the V-scheme, αV
s (R) derived

from the true static potential cannot possibly grow monotonically. Instead, at some

scale, αV
s must start to become smaller and eventually change sign. There seems to

be little hope of relating such behavior to the running coupling, at least up to three

loops in perturbation theory.

As long advocated by one of us (C.B.T.), it is less problematic to define the

running coupling by the force (the derivative of the potential) that the static quark

exerts on the static anti-quark [18]

|F (R)| =

(

1 − 1

N2
c

)

Ncαs(R)

2R2
≡
(

1 − 1

N2
c

)

πλ(R)

2R2
, (3.2)

where we have defined the ’t Hooft coupling held fixed in the Nc → ∞ limit by

λ = Ncαs/π. In the rest of this paper αs and λ will always refer to the running

coupling defined through the static force. This scheme, also advocated in recent

years by Sommer [19], has the obvious advantage that the running coupling so defined

doesn’t have to change sign. The corresponding Gell-Mann-Low function, defined as

ψ(λ(R)) ≡ −R dλ
dR

, (3.3)

is given to three loops for Nf = 0 but for any Nc by [5]

ψ(λ) ≡ −11

6
λ2 − 17

12
λ3 − (3.795...)λ4 − · · · (3.4)

The exact coefficient in the last term is rather cumbersome, so we have merely quoted

its numerical value to 3 decimal places.

– 7 –
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Figure 4: The force between static quarks in units of the Sommer scale R0 ≈ 0.5 fm,

computed perturbatively to three loops at Nc = 3 in the force renormalization scheme [5].

Also shown is the asymptotic string tension of (430MeV)2 × R2
0.

Calculating λ(R) by truncating ψ at three loops leads to a force that, as R

increases, drops to a minimum at Rm given by

2λ(Rm) + ψ(λ(Rm)) = 0, (3.5)

after which the force increases, blowing up as (R∞−R)−1/3 at the Landau singularity

R = R∞, as shown (for Nc = 3) in Fig. 4. In this figure, R0 is the Sommer scale

R0 ≈ 0.5 fm. The corresponding static quark potential, in the force renormalization

scheme, is obtained by integrating the force,

Vqq̄(R) = Vqq̄(RA) +

∫ R

RA

dR
∣

∣

∣
F (R)

∣

∣

∣
(3.6)

where RA ≪ R0 and Vqq̄(RA) may be estimated at sufficiently small αs(RA) by using

eq. (3.1), with αV
s ≈ αs. Note that the Landau singularity in the force is integrable

as R → R∞ from below, and the integrand becomes complex for R > R∞. Thus the

potential curve stops at R∞ at a finite value. It was found by Necco and Sommer in

ref. [5] that the resulting three-loop potential is a surprisingly accurate match to the

lattice Monte Carlo result, almost up to the Landau point at R∞/R0 ≈ 0.78. This

three-loop potential (with RA = 0.15R0) is displayed in Fig. 5.
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Figure 5: The static quark potential at Nc = 3, computed perturbatively to three loops

in the force renormalization scheme.

It is clear that a potential of this sort can trap a massless particle, whose kinetic

energy |p| decreases as 1/R by the uncertainty principle: Minimizing 1/R + V (R)

gives

1

R2
= V ′(R) =

(

1 − 1

N2
c

)

πλ(R)

2R2
, (3.7)

in other words λ(R) = 9/4π ≈ 0.71 for Nc = 3. The effective coupling required for

binding a massless particle is of order O(1), but not huge. There is thus hope that,

after taking binding into account with such an extrapolation of the RG improved

perturbative force, subsequent corrections may be under control. It follows that,

according to the force renormalization scheme, it is possible to have bound states

containing massless constituent gluons, such as glueballs and gluon chains. Moreover,

there is no indication of any gross failure of perturbation theory up to R ≈ Rm. On

the contrary, as just mentioned, it seems that perturbation theory fits the numerical

lattice data quite well.

3.1 Saturation Mechanism

Beyond R = Rm the three loop force increases, and the corresponding potential is

concave upwards. In contrast, a confining force is expected to be asymptotically
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constant: One can say that the perturbative force extrapolated to R > Rm over-

confines. In fact, there is a rigorous theorem, analogous to the well known convexity

of the thermal free energy, which states that the static force never increases with

quark separation, or, equivalently, that the static potential is concave downwards [20].

It appears that physics beyond three loops, at R > Rm, must supply a mechanism

to weaken the extrapolated perturbative force law, not strengthen it. In our opinion,

this mechanism is supplied by the formation of a gluon chain, as described in section

2. As the quark-antiquark separation increases, it can become energetically favorable

for a gluon to materialize between the quark and anti-quark. Because the gluon is

in the adjoint representation, its color can be arranged so that it is simultaneously

a sink of the color flux from the quark and from the anti-quark, and indeed this

is precisely the arrangement of color dictated by the Nc → ∞ limit. The effect

of a gluon with this color orientation is to shield the direct force of the quark on

the antiquark, and thereby reduce the effective separation of color charge. Further

increase of R leads to the successive appearance of more constituent gluons, creating

a gluon chain between the quark and anti-quark. Thus the separation of directly

interacting color charges never exceeds some maximum value. It is presumably this

saturation mechanism which prevents the static force from eventually increasing with

quark-antiquark separation, in accordance with the concavity theorem. The same

saturation mechanism which bounds the average color charge separation also bounds

the corresponding effective coupling. If this maximal effective coupling is not too

large, it should be possible to treat the interaction between neighboring gluons by

perturbative methods.

In the next section we develop a variational approach to the calculation of the

properties of the gluon chain responsible for quenching the increasing force beyond

Rm. But it is worth noting here that the form of the perturbative force law shown in

Fig. 4, plus the hypothesis of a saturation mechanism, already provides the basis for

a zero parameter estimate of the string tension, namely σ ≈ F (Rm). In other words,

we accept the extrapolated perturbative force up to the point where it violates the

concavity theorem, after which we replace it with the simplest behavior consistent

with the theorem, namely a constant. This reasoning is reminiscent of the Maxwell

constuction in statistical physics, which restores convexity to an approximate calcu-

lation of the free energy of a Van der Waals gas.

As already noted, there is a theorem which tells us that the increasing part of

the force curve in Fig. 4 (at R > Rm) cannot apply to the actual force between static

quarks. However, if that curve is taken as a paradigm of the nearest-neighbor force

binding gluons in the chain (neglecting change in gluon number), then its increasing

part may play a role in providing a restoring force towards an equilibrium gluon

separation, particularly if the mean intergluon separation in the chain exceeds Rm.

In this case, there is a net restoring force on any gluon fluctuating away from the

mean separation. Again, the saturation mechanism will prevent any overall increase

– 10 –



of the static force with quark separation.

To arrive at an estimate of the string tension, it remains to find λ(Rm) and Rm

from Eq. 3.5. Truncating ψ at three loops leads to a cubic equation for λ(Rm), with

the numerical solution λ(Rm) ≈ 0.540, so (1 − 1/N2
c )πλ(Rm)/2 ≈ 0.754 for Nc = 3.

This value of λ gives the relative size of the terms entering into Eq. 3.5 as

2λ− ψ0λ
2 − ψ1λ

3 − ψ2λ
4 = .540(2 − 0.990 − 0.413 − 0.598), (3.8)

so it is clear that one is extrapolating beyond the strict validity of perturbation

theory. However, if the three loop term turns out to be anomalously large, the

prospects for our perturbative approach would be brighter. From the slope of

the meson Regge trajectories α′ ≈ 0.86GeV−2 we have the estimate from data of

σ = 1/2πα′ ≈ (430MeV)2. This leads to Rm ≈ (495MeV)−1 ≈ 0.40fm. According to

Figures 2 and 4 in ref. [5], we can infer that with ΛMS = 238MeV, the phenomenolog-

ically preferred value, Rm ≈ 0.3fm. The string tension for this value would be higher

by a factor of (1.33)2 ≈ 1.76, i.e. σ ≈ (570MeV)2. Quark production, vetoed in our

Nc → ∞ model, is expected to reduce the predicted tension somewhat, but probably

not this much. Conversely, the string tension inferred from the meson trajectories

would require ΛMS = 177 MeV.

Since the saturation mechanism must come into play at R ≈ Rm, where pertur-

bation theory begins to fail, we would conclude that the QCD ground state Ψqq[A] in

the presence of static qq sources is dominated, at R ≈ Rm, by a one-constituent gluon

component (perturbation theory expands around a state with zero constituent glu-

ons).3 If that is so, then the average separation of color charge along the axis joining

the static sources will be Rm/2. Assuming this “axial separation” of color charge re-

mains fixed as quark separation L increases, as it should according to the gluon chain

model, then for large separations, at Nc = 3, we may estimate L/N ≈ Rm/2 ≈ 0.15

fm, where N is the number of gluons in the chain. This does not mean that the

gluon is sharply localized on the axis, however. Indeed, in order to be bound it must

be spread to a size r at which the running coupling is of O(1), which means r > Rm.

4. A Variational Framework, and String-like Behavior

In order to make the notion of “constituent gluon” precise, it is necessary to work in

a Hamiltonian framework, which also means picking a physical gauge, e.g. Coulomb

or light-cone gauge. The ground-state wavefunctional in any physical gauge can be

expressed in the path-integral form

Ψ0[A(x)] =

∫

DAµ(x, t < 0) δ
[

F (A)
]

∆FP [A] exp
[

−
∫ 0

−∞

dtLA

]

(4.1)

3An old lattice Monte Carlo investigation of the gluon content of the QCD string (second article

of ref. [2]) suggests that the one-constituent gluon component dominates beyond 3 lattice spacings

at β = 2.4, corresponding to R = 0.73R0.
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where LA is the gauge-field Lagrangian, F (A) = 0 the gauge condition, and ∆FP the

Faddeev-Popov determinant.4 An excited state can be constructed by multiplying

the ground state with some polynomial in the fields, i.e.

Ψex[A] = Q[A]Ψ0[A]. (4.2)

For example, the wavefunctional appropriate for a glueball state would be

ΨG[A] =
Nmax
∑

N=1

Ψ
(N)
G [A] (4.3)

where Ψ
(N)
G [A] is the component of the glueball state with N constituent gluons,

which has the general form

Ψ
(N)
G [A] =

{
∫

dx1dx2...dxN fµ1µ2...µN
(x1,x2, ...,xN)

TrAµ1
(x1)Aµ2

(x2)...AµN
(xN)

}

Ψ0[A]. (4.4)

For our purposes, a “constituent gluon” simply refers to a gluon field operator mul-

tiplying the exact ground state. The energy of any excited state (4.2) above the

ground-state energy, is given by

E =
〈Ψex|H|Ψex〉
〈Ψex|Ψex〉

− 〈H〉. (4.5)

Defining

Qt ≡ Q[A(x, t)] (4.6)

the energy of the excited state can be computed from a correlation function in the

Euclidean-time version of the theory

E = −1

2
lim
T→0

d

dT
log〈Q†

TQ−T 〉 (4.7)

where 〈Q†
TQ−T 〉 is the Euclidean vacuum expectation value of these operators. In

the perturbative calculation of E one need only include the connected diagrams.

Equation (4.7) is the starting point for a field-theoretic variational approach to

bound states of constituent quanta [3,21]. The idea is to first make some trial ansatz

for Q[A] involving a few parameters, calculate the energy Etrial of the trial state

perturbatively, via eq. (4.7), and then find the parameter values which minimize

this trial energy. The result is a variational estimate for bound-state energy, and an

approximation to the corresponding wavefunctional.

4We note that in a physical gauge either ∆FP is trivial (as in light-cone gauge), so that there is

no need to introduce ghost fields, or else the ghost fields do not propagate in time, as in Coulomb

gauge.
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In the case of the gluon chain, we take the static sources to be at points x = 0

and x = L, and consider N -constituent gluon states generated from trial operators

of the form

Qchain[A] = qa1(0)
{

∫

dx1dx2...dxN ψµ1µ2...µN
(x1,x2, ...,xN)

Aa1a2

µ1
(x1)A

a2a3

µ2
(x2)...A

aN aN+1
µN

(xN)
}

qaN+1(L) (4.8)

where ψ is a trial N-gluon wavefunction. In the Nc → ∞ limit, only interactions

between nearest-neighbor gluons (in the diagrams) need be taken into account. A

consistent chain picture will require that the RG-improved intergluon interaction

energy as a function of gluon separation is qualitatively similar to the static quark

potential shown in Fig. 5. Whether this happens remains to be seen.

4.1 A simplified model

We will not attempt, in this article, a variational computation of the gluon-chain

energy E in the full field theory. The perturbative evaluation of 〈Q†
TQ−T 〉 for the

gluon chain state is very tedious, especially beyond tree level, and again involves

delicate issues of renormalization scheme dependence. However, we can capture

most of the important qualitative features of the field theory calculation with a

simple quantum-mechanical model, in which the (N-1)-gluon Hamiltonian is taken

to be

H =

N−1
∑

n=1

∣

∣

∣
pn

∣

∣

∣
+

N−1
∑

n=2

V (xn − xn−1) + Vqg(x1) + Vqg(L − xN−1) (4.9)

where V (x) is the gluon-gluon interaction energy, while Vqg(x) is the interaction

energy between a static quark and its neighboring gluon. The restriction to nearest-

neighbor interactions is, of course, justified in the large Nc limit. In field theory

the interaction between each pair of neighbors is described by renormalization group

improved Bethe-Salpeter style ladder exchanges. In addition to the RG improved

Coulomb exchanges that build up the static force displayed in Fig. 4, exchange of

transverse gluons and contact interactions will add spin and momentum dependence

to the interaction. We can anticipate that the most attractive spin channels are those

in which neighbor gluons are in a spin 0 state, so that for a chain we should have

anti-ferromagnetic order [22]. As we would do in the field theory calculation, we use

the variational method in this simplified model to obtain an approximation to the

N-gluon ground state energy E(L). As already mentioned, if the potentials V and

Vqg have the qualitative behavior shown in Fig. 5, a self-consistent gluon chain will

arise.
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• Product Ansatz − Relative Coordinates

We begin with a simple product ansatz for the gluon-chain wavefunctional

Ψ(x1,x2, ...,xN−1) = A

N
∏

i=1

ψ(ui) (4.10)

where the {ui} are relative coordinates

ui = xi − xi−1 (4.11)

and

x0 ≡ 0 , xN = L (4.12)

It is convenient to also change integration variables to relative coordinates, and the

integration measure becomes

dV =
d3q

(2π)3

N
∏

i=1

d3ui exp

{

iq ·
(

N
∑

i=1

ui − L

)}

,

∫

dV |Ψ|2 = 1 (4.13)

where integration over q gives a delta function enforcing the constraint

N
∑

i=1

ui = L ≡ NR (4.14)

Defining

F (q) ≡
∫

d3u|ψ(u)|2eiq·u (4.15)

and the Fourier transform of the relative-coordinate wavefunction

φ(k) =

∫

d3u

(2π)3/2
e−ik·uψ(u) (4.16)

we find for the normalization constant

A−2 =

∫

d3q

(2π)3
e−iq·LF (q)N (4.17)

and the expectation value of the gluon nearest-neighbor potential

〈V (uk)〉 = A2

∫

d3q

(2π)3
e−iq·LF (q)N−1

∫

d3u|ψ(u)|2V (u)eiq·u (4.18)
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For the purpose of computing the expectation value of kinetic energy, it is useful

to introduce

〈eiy·pk〉 = A2

∫

d3q

(2π)3
e−iq·LF (q)N−2

∫

d3ud3u′eiq·(u+u′)ψ∗(u)ψ∗(u′)ψ(u + y)ψ(u′ − y)

= A2

∫

d3q

(2π)3
e−iq·LF (q)N−2

∫

d3kd3k′eiy·(k−k′)φ∗(k + q)φ∗(k′ + q)φ(k)φ(k′) (4.19)

〈δ(pk − p)〉 = A2

∫

d3q

(2π)3
e−iq·LF (q)N−2

∫

d3kφ∗(k + q − p)φ∗(k + q)φ(k − p)φ(k). (4.20)

In the limit N → ∞ we can evaluate the q integral by a saddle-point technique. Call

q0 the saddle point determined by

∇F
F

(q0) = i
L

N
= iR. (4.21)

Then we have in this limit

〈V (uk)〉 = F (q0)
−1

∫

d3u|ψ(u)|2V (u)eiq0·u (4.22)

〈eiY·pk〉 = F (q0)
−2

∫

d3u

∫

d3u′eiq0·(u+u′)

ψ∗(u)ψ∗(u′)ψ(u + Y)ψ(u′ −Y) (4.23)

〈|pk|〉 = F (q0)
−2

∫

d3p|p|
∫

d3Y

(2π)3
e−iY·p

∫

d3u

∫

d3u′eiq0·(u+u′)

ψ∗(u)ψ∗(u′)ψ(u + Y)ψ(u′ −Y)

= F (q0)
−2

∫

d3p|p|
∫

d3k

φ∗(k + q0 − p)φ∗(k + q0)φ(k − p)φ(k). (4.24)

Note that in our product ansatz for the trial wavefunction, all dependence on the

gluon number in the chain, indicated by the subscript k, has disappeared in V (uk)

and |pk|. The total energy of the trial state is then simply 5

E = N(〈|pk|〉 + 〈V (uk)〉). (4.25)

5We disregard the distinction between V and Vqg at the ends of the chain, on the grounds that

this is unimportant for E/L at large L.
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Once this quantity is minimized as a function of the variational parameters in the

wavefunction, our estimate for the QCD string tension is the energy per unit length

σ =
E
L

=
〈|pk|〉 + 〈V (uk)〉

R
. (4.26)

To go further, we need to choose a definite ψ(u), for example the gaussian

ψ(u) = e−u2/2r2

. (4.27)

In this case there are two variational parameters. One of them is the parameter r in

the above gaussian. The other is the number N of gluons in a chain between heavy

sources separated by distance L or, equivalently, the distance R = L/N . For the

gaussian wavepacket we find

φ(k) = r3e−k2r2/2

F (q) = (πr2)3/2e−q2r2/4, q0 = −2iR

r2

〈V 〉 =
1

Rr
√
π

∫ ∞

0

uduV (u)
(

e−(u−R)2/r2 − e−(u+R)2/r2
)

(4.28)

for central V (u). In particular we find
〈

1

|u|

〉

=
1

Rr
√
π

∫ ∞

0

du
(

e−(u−R)2/r2 − e−(u+R)2/r2
)

=
erf(R/r)

R
. (4.29)

To evaluate the kinetic energy, note that

(k + q0 − p)2 + (k + q0)
2 + (k − p)2 + (k)2

= 4k2 + 4k · (q0 − p) + (q0 − p)2 + q2
0 + p2

= (2k + q0 − p)2 + q2
0 + p2 (4.30)

so the k integral is a simple Gaussian leading to

〈|pk|〉 =

(

r2

2π

)3/2 ∫

d3p|p|e−r2p2/2 =
1

r

√

8

π
. (4.31)

Thus the product ansatz with gaussian wavepackets leads to

E
L

=
1

rR

√

8

π
+

1

R
〈V 〉. (4.32)

In particular, taking for V the instantaneous Coulomb potential

V (u) = −CF
αs

|u| (4.33)

we have

E
L

=
1

rR

√

8

π
− CFαs

R2
erf

(

R

r

)

. (4.34)
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• String Wavefunction Ansatz

The second type of trial state we consider here is the ground state wavefunction

of a discretized string. Strings with discrete degrees of freedom were studied some

time ago in ref. [16], and we will borrow some results directly from that reference.

The ground state of the discrete string is the state annihilated by all the lowering

operators for string modes

ai
mΨ(x1,x2, ...,xN−1) = 0

{

m = 1, 2, .., N − 1

i = 1, 2, 3
(4.35)

where the position and momentum of the k-th gluon are related to the string modes

via

xk =
L

N
k +

√

2

NT0

N−1
∑

m=1

1√
2ωm

(

am + a†
m

)

sin
(mπ

N
k
)

(4.36)

pk = −i
√

2T0

N

N−1
∑

m=1

√

ωm

2

(

am − a†
m

)

sin
(mπ

N
k
)

(4.37)

where

ωm = 2 sin
mπ

2N
is the frequency of the mth mode. Then we have

〈0|eix·pk|0〉 = exp
(

−x2∆k
2

)

〈0|δ(p− pk)|0〉 =

(

1

4π∆k
2

)3/2

exp

(

− p2

4∆k
2

)

(4.38)

〈0|eip·uk|0〉 = exp
(

iR · p− p2∆k
1

)

〈0|δ(u− uk)|0〉 =

(

1

4π∆k
1

)3/2

exp

(

−(u− R)2

4∆k
1

)

(4.39)

where

∆k
1 =

1

NT0

N−1
∑

m=1

sin
mπ

2N
cos2

(

mπ

N

(

k +
1

2

))

=
1

4NT0

{

cot
π

4N
+

1

2
cot

π(4k + 3)

4N
− 1

2
cot

π(4k + 1)

4N

}

(4.40)

≈ 1

πT0

[

1 − 1

(4k + 3)(4k + 1)

]

→ 1

πT0

(4.41)

∆k
2 =

T0

N

N−1
∑

m=1

sin
mπ

2N
sin2

(mπ

N
k
)

→ T0

π

=
T0

4N

{

cot
π

4N
− 1

2
cot

π(4k + 1)

4N
+

1

2
cot

π(4k − 1)

4N

}

(4.42)

≈ T0

π

[

1 +
1

(4k + 1)(4k − 1)

]

→ T0

π
. (4.43)
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From these expressions we find, for V (u) proportional to 1/|u| as in eq. (4.33),

E
L

=
1

R

4√
π

√

∆2 −
CFαs

R2
erf

(

R

2
√

∆1

)

. (4.44)

Having tried two different types of trial wavefunctions, the question is which

leads to a lower ground state energy. The answer is that the string wavefunction is

the better of the two, at least for inter-gluon potentials proportional to 1/|u|. To see

this, simply define r ≡ 2
√

∆1, so that

E
L

=
1

rR

8√
π

√

∆1∆2 −
CFαs

R2
erf

(

R

r

)

(4.45)

and, for the string wavefunction, ∆1∆2 = 1/π2. Comparison with eq. (4.34) shows

that for any values of r and R, the string wavefunction has a slightly lower energy

than the relative-coordinate product wavefunction.

4.2 String Tension

Without making any assumptions about the inter-gluon potential, the energy per

unit length of the gluon-chain in the string-wavefunction ansatz is

E
L

=
1

R

[

8

π3/2

1

r
+ 〈V (u)〉

]

. (4.46)

As explained in section 2, the minimal value of this energy per unit quark separa-

tion, as a function of the parameters r, R, is the variational estimate of the QCD

string tension σ in our quantum-mechanical model. Of course, even the simplified

model requires as input the intergluon potential V (u), and to get this interaction

energy right one should probably use the variational approach in the full field theory.

However, even without knowing the intergluon potential precisely, we can make some

rough estimates using knowledge of the three-loop static Coulomb potential as input.

First of all, if V (u) were simply due to tree-level effects, then we would have

〈V (u)〉 ∝
〈

1

|u|

〉

. (4.47)

Likewise, the running coupling is generally regarded as a function of the inverse color

charge separation [5,17]. Let us therefore assume that 〈V 〉 depends on the variational

parameters r, R only through the VEV

1

s
≡
〈

1

|u|

〉

=
1

R
erf

(

R

r

)

(4.48)

so that we may write

V (s) = 〈V (u)〉

F (s) ≡ dV

ds
(4.49)
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where F (s) can be regarded as the magnitude of a semi-classical “force” between

gluons.

Minimizing E/L results in two conditions. The first, obtained from minimizing

wrt R, is
1

R

(

8

π3/2

1

r
+ 〈V (u)〉

)

=
∂

∂R
V (s) (4.50)

or, in view of (4.46),
E
L

=
∂

∂R
V (s) =

∂s

∂R
F (s). (4.51)

This equation has a simple physical interpretation. On the one hand, the QCD string

tension in the gluon chain model is simply the energy of the chain per unit quark-

antiquark separation, i.e. E/L on the lhs of (4.51). On the other hand, the “tension”

in this system should be related to the change in potential energy of the system with

respect to small deformations δR in inter-gluon separation; this is the “restoring

force” in the system along the quark-antiquark axis. The minimum condition (4.51)

equates these two types of expression for the string tension. The second condition

for the minimum is obtained from minimizing E/L wrt r, which gives

8

π3/2

1

r2
=
∂s

∂r
F (s). (4.52)

Solving (4.52) for F (s) and inserting into (4.51) gives an expression for the string

tension (σ = E/L)

σ =
∂s

∂R

(

∂s

∂r

)−1
8

π3/2

1

r2
(4.53)

where

∂s

∂R
= erf−1(

R

r
) − 2√

π

R

r
erf−2(R/r) exp(−R2/r2)

∂s

∂r
=

2√
π

R2

r2
erf−2(R/r) exp(−R2/r2). (4.54)

Given F (s), we could use (4.51) and (4.52) to determine R and r, and then (4.53)

would give the string tension. Of course, this procedure assumes that eqs. (4.51) and

(4.52) have a solution at finite r, R. For F (s) determined at tree level, without taking

account of loop corrections or the running coupling constant, eq. (4.52) at fixed R

will typically have a solution at r = ∞ (small αs), or r ∝ R (large αs). But then

(4.51) will only be solved at R = ∞ or R = 0 respectively. Clearly, incorporating

the running coupling is a crucial ingredient to a self-consistent chain solution. Even

though the detailed strengths and shapes will be different, we can expect the RG

improved forces (with ψ truncated at one, two or three loops), corresponding to

V and Vqg in attractive channels, to have the same qualitative behavior as Fig. 4:

an initial decrease to a nonzero minimum, and a blowup at finite R due to the
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Landau singularity. This qualitative behavior is sufficient to guarantee a consistent

chain solution. Quantitative accuracy relies on the chance that the effective coupling

required for the solution is not too large.

At tree-level, the inter-gluon force F (s) has three components: the Coulomb

force, the magnetic exchange force, and the contact interaction. Some previous

variational [3] and bag [22] calculations suggest that the magnetic exchange force

between neighboring gluons with total spin 0 will be attractive, and roughly equal in

magnitude to the Coulomb force, while the contact interaction is repulsive and (for

glueball wavefunctions) about 60% as large as the Coulomb force. For an accurate

estimate of all contributions, we must actually carry out the calculation for the

gluon-chain by the field theory method outlined above. However, based on the work

in refs. [3,22], we expect that the sum of contributions results in a (renormalization-

group improved) intergluon force of the form

F (s) ≈ κCF
αs(s)

s2
(4.55)

where κ is a number which is probably between one and two.6

Even without knowing F (s) precisely, we can still use the three-loop perturbative

results for the static potential to make some educated guesses about the size of

R and r, and arrive at a “ballpark estimate” for σ. At the end of section 3, we

argued for R = Rm/2 ≈ 0.3R0 , on the grounds that a constituent gluon should

appear between the quark-antiquark pair when they are L = Rm apart, since this is

where the perturbative expansion around a zero constituent gluon state seems to be

breaking down. For the r parameter, we just note that it is not reasonable to have s

beyond the Landau singularity, because before that distance we would expect more

constituent gluons to have appeared and reduced the effective charge separation. On

the other hand, the bound state condition will require a running coupling αs(s) which

is O(1), otherwise the gluon kinetic energy dominates, and there is no binding. So s

cannot be much less than the Landau singularity. A guess which is perhaps not so

far off is s = Rm = 0.6R0 which, when combined with R = Rm/2 = 0.3R0, implies

r = 0.63R0. These particular guesses happen to land close to the right answer, i.e.

σ =
1.26

R2
0

(4.56)

where the accepted answer for the QCD string tension is σ = (430 Mev)2 = 1.18/R2
0.

This rather close agreement is probably fortuitous, since we are only making guesses

for r and R, but it does show that our numbers are in the right ballpark, and there

is some hope that the eventual calculation of σ will be in reasonable agreement with

the phenomenological value. It is also worth noting that with these parameters, the

6At loop level, there will also be corrections to the kinetic energy term, which tend to increase

the size of that term [3].
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spread in the wavepacket of each constituent gluon (set by s), is roughly twice the

size of the average intergluon separation along the quark-antiquark axis which is

R ≈ 0.3R0. Thus the QCD string is rather thick even before roughening effects come

into play.

Continuing a little further, we note that the above choice of parameters R, r

implies

α(s) =
1

κCF

4

π
eR2/r2

=
1.60

κCF
(4.57)

If we use the 3-loop running coupling in ref. [5], and Nc = 3, then s ≈ 0.6R0 would

require κ ≈ 2, which is probably a little large. But none of these numbers should

be taken very seriously at this stage, and a full field-theoretic calculation using the

string wavefunction ansatz is clearly required, before we can draw any quantitative

conclusions.

4.3 Roughening and the Lüscher Term

The phenomenon of roughening, i.e. the logarithmic growth with L of the transverse

size of the gluon chain, requires the long range correlations contained in the string

wave function ansatz. For example, the product ansatz would not display this effect.

Indeed it is easy to calculate

〈0|x2
k⊥|0〉 =

D − 2

2NT0

N−1
∑

m=1

sin2(mπk/N)

sin(mπ/2N)
(4.58)

∼ D − 2

2πT0
lnN =

r2(D − 2)

8
ln
L

R
. (4.59)

These same correlations also produce certain finite size effects, that are sub-dominant

for L/R → ∞, in the trial energy. These come from explicit 1/N corrections and

from the fact that ∆k
1,2 have mild k dependence.

To estimate these effects we first note some sums:

N−1
∑

k=1

∆k
2 =

T0

2

N−1
∑

m=1

sin
mπ

2N
∼ T0

2

[

2N

π
− 1

2
− π

24N
+ · · ·

]

(4.60)

N
∑

k=1

∆k
1 =

1

2T0

N−1
∑

m=1

sin
mπ

2N
∼ 1

2T0

[

2N

π
− 1

2
− π

24N
+ · · ·

]

. (4.61)

It is of interest to estimate the finite size contributions to the energy with our string

trial wave function. For this purpose the detailed form of the kinetic and potential

energy is largely irrelevant and it is more efficient to use an arbitrary kinetic K(p)
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and potential V (r) energy in our formulas. We then have, after changing integration

variables to dimensionless ones:

〈K(pk)〉 =
1

π3/2

∫

d3pe−p2

K

(

2p
√

∆k
2

)

(4.62)

〈V (uk)〉 =
1

π3/2

∫

d3ue−u2

V

(

R + 2u
√

∆k
1

)

. (4.63)

Then calling the limiting values of ∆k
1,2 → ∆1,2, we can expand the energy to first

order in ∆k
1,2 − ∆1,2, and do the sums over k.

E =
N−1
∑

k=1

〈K(pk)〉 +
N
∑

k=1

〈V (uk)〉

= (N − 1)
1

π3/2

∫

d3p e−p2

K
(

2p
√

∆2

)

+N
1

π3/2

∫

d3u e−u2

V
(

R + 2u
√

∆1

)

+
N−1
∑

k=1

∆k
2 − ∆2

∆2

√
∆2

π3/2

∫

d3p e−p2

p · ∇K

+

N
∑

k=1

∆k
1 − ∆1

∆1

√
∆1

π3/2

∫

d3u e−u2

u · ∇V (4.64)

∼ (N − 1)
1

π3/2

∫

d3p e−p2

K
(

2p
√

∆2

)

+N
1

π3/2

∫

d3u e−u2

V
(

R + 2u
√

∆1

)

+

[

1 − π

4
− π2

48N

]
√

∆2

π3/2

∫

d3p e−p2

p · ∇K

+

[

−π
4
− π2

48N

]
√

∆1

π3/2

∫

d3u e−u2

u · ∇V.

In these expressions ∇ is always the gradient with respect to the argument of the

function that follows it. Next we minimize E/L at fixed L with respect to the

parameters T0 and R = L/N , and obtain

0 =

√
∆2

π3/2

∫

d3p e−p2

p · ∇K −
√

∆1

π3/2

∫

d3u e−u2

u · ∇V (4.65)

0 = − 1

R2

[
∫

d3p e−p2

K
(

2p
√

∆2

)

+

∫

d3u e−u2

V
(

R + 2u
√

∆1

)

]

+
1

R

∫

d3u e−u2 R

R
· ∇V

(

R + 2u
√

∆1

)

(4.66)

These two equations determine T0 and R. When both are satisfied, we can simplify

our expression for the variational energy:

E = NR
1

π3/2

∫

d3u e−u2 R

R
· ∇V

(

R + 2u
√

∆1

)

− 1

π3/2

∫

d3p e−p2

K
(

2p
√

∆2

)
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+

[

1 − π

2
− π2

24N

] √
∆2

π3/2

∫

d3p e−p2

p · ∇K(2p
√

∆2) (4.67)

=
L

π3/2

∫

d3u e−u2 R

R
· ∇V

(

R + 2u
√

∆1

)

− πR

24L

√
∆2√
π

∫

d3p e−p2

p · ∇K(2p
√

∆2)

+
[

1 − π

2

]

√
∆2

π3/2

∫

d3p e−p2

p · ∇K −
∫

d3p

π3/2
e−p2

K
(

2p
√

∆2

)

. (4.68)

The first two terms are the linear potential and Lüscher terms respectively. The

last two terms are independent of L and can be absorbed in the source energy. For

K(p) = |p|, as appropriate for massless gluons, the integrals in the last three terms

can be immediately carried out, yielding

E =
L

π3/2

∫

d3u e−u2 R

R
· ∇V

(

R + 2u
√

∆1

)

− π

24L

4R

r
√
π
−
[

1 +
π

2

] 4

rπ3/2
. (4.69)

For the bosonic string the factor multiplying π/24L in the Luscher term would be

D − 2 = 2 in 4 dimensional space time. With our estimate above of R ≈ r/2 this

coefficient is estimated to be 2/
√
π ≈ 1.13. But these numbers are far too preliminary

to arouse disappointment in such a discrepancy, especially since it is not even settled

that the bosonic string result is correct for QCD.

5. Conclusions

We have developed our picture of a gluon chain into a viable calculational framework

for the physics of quark confinement which stays close to perturbative ideas. The

crucial observation is that the RG improved force law shows behavior which can be

interpreted as over-confinement. This shows that perturbative physics might contain

the germ of quark confinement which, in combination with the gluon chain saturation

mechanism, leads to a concrete proposal for detailed calculations.

We sketched a field theoretic variational approach to the gluon chain wave func-

tion. For a preliminary estimate of the the string tension and other features of the

QCD string, we studied a simplified model, which replaced field theoretic exchange

interactions with a quantum mechanical potential. This exercise shows how the

chain model incorporates the important effects of roughening and the Luscher term

in the quark potential. In addition, the numerical estimate for the string tension was

certainly in the right ballpark.

The next stage of this project is to redo the variational treatment completely in

the context of field theory. One issue left unresolved is whether the RG improvement

of the interaction between neighbor gluons on the chain shows the same qualitative

behavior as that of the RG improved static force. If it does, the consistency of our
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physical picture will be confirmed. Whether the detailed quantitative predictions of

our model will then turn out as accurate as we hope − say to 15 or 20 per cent − is

not yet clear.

We should finally note that the gluon chain model, which is formulated in terms

of particle-like excitations, is not opposed to a description of quark confinement in

terms of some special class of field configurations, e.g. center vortices or monopoles,

which dominate the QCD vacuum. Instead, these approaches should be seen as com-

plementing one another. The center dependence of the asymptotic string tension

provides a good example. In terms of particle (gluon) excitations, we can easily un-

derstand that this dependence is due to string-breaking by particle production, which

results in color screening of the higher-representation heavy sources by constituent

gluons. In the gluon chain model in particular, the process is illustrated in Fig. 3. On

the other hand, if one tries to explain the center dependence of large Wilson loops in

terms of field fluctuations affecting the Wilson loop holonomy, then it is clear that

the area law must be due exclusively to fluctuations in the loop holonomy among the

center elements of the gauge group. This leads (perhaps inevitably) to a picture of

the QCD vacuum as being dominated at large scales by center vortex configurations.

Thus we have both a particle (chain breaking) and field (center vortex) explanation

for the same phemonemon, namely, the N-ality dependence of the asymptotic string

tension. These particle/field descriptions need not contradict one another; they are

more likely to be dual descriptions of the same underlying physics.

The attractive feature of the gluon chain model is that it offers a simple and con-

cise account of so many features of the QCD confining potential: linearity, Casimir

scaling (at large Nc), center dependence, roughening, and the Lüscher term. Be-

yond that, the model provides a promising framework for quantitative calculation of

the string tension and, perhaps, low-lying masses. Whether these calculations are

practical, and if so how the results compare with phenomenology, remains to be seen.
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